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Germany 

Received 16 February 1995 

Abstract We study the subband structure in a rough film with volume as well as surface 
scatterers. While volume scattering leads to an attenualion term in the differential equation of 
the Green function, surface roughness is incorporated via a companding boundary condition. 
The boundary condition yields a complicated behaviour of the lateral modes, e.g. complex 
eigenvalues and a shift of the subband thresholds, but the resulting G ~ e n  function i s  diagonal in 
a lateral mode representation. In U i s  sense. our approach conmts  with the usual penurbational 
m e n 1  of surface roughness. The scattering processes give rise to intersubband transitions 
into both the propagaring and evanescent modes. The corresponding transition rates and the 
scattering-induced level broadening arr determined self-consistently. The thickness dependence 
of the density of States and of the conductivity are discussed and compared with results which 
follow from the neglect of level broadening. For typical parameters. level broadening along 
with different shifts of the subband thresholds due to various kinds of surface scatterer strongly 
smear out the quantum size-induced oscillations of the conductivity and the density of states. 
These results are in agreement with the general trend in experimental observations. 

1. Introduction 

The confinement of electrons in thin films gives rise to the formation of lateral subbands. 
Two types of these discrete levels are distinguished. The levels above the Fermi energy, 
infinite in number, are denoted as evanescent ones because of the exponential drop of their 
wavefunctions. The levels below the Fermi energy are conducting. The number of these 
subbands, nE, in a smooth metallic film is given by int[k~d/n], where kF is the Fermi wave 
number and d the thickness. This implies that as d increases by half the Fermi wavelength 
a further subband drops below the Fermi energy and becomes conducting. According to 
present theoretical models, e.g. 11.21, this interrelation between d and n, should finally 
lead to pronounced periodic oscillations of physical quantities with varying thickness. The 
occurrence of discrete subbands and, in a narrower sense, the oscillatory behaviour just 
mentioned are referred to as quantum size effects (QSE). So, the lateral subbands themselves 
constitute an essential part of each quantum mechanical description of thin films. 

In general, a real sample is neither bounded by a smooth surface nor free from 
volume defects. This means that we have to take into account surf~e-roughness-induced 
as well as volume scattering processes. Two consequences arise. On the one hand, 
scattering causes nansitions between all propagating and evanescent subbands which will 
be characterized, in our approach, by damping quantities. The transitions are weighted 
by the densities of states (DOS) of the final subbands. The calculation of the damping 
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quantities thus requires a knowledge of the DOS of all modes or, equivalently, the one- 
particle Green function from which the DOS can be obtained. On the other hand, the Green 
function itself, most conveniently expressed in a lateral mode representation, is influenced by 
scattering processes. In this sense, both the formation of lateral subbands and their mutual 
coupling are subject to scattering-induced effects, i.e. the broadening of the individual levels 
as well as the damping quantities (or intersubband transition rates) have to be determined 
self-consistently. 

In a recent paper [3], we have discussed the self-consistent level broadening due to 
volume scattering and the corresponding DOS and electrical conductivity. It is the purpose 
of the present work to generalize our theory by including surface roughness scattering. In [3] 
the self-consistency is achieved by two equations, namely the wave equation for the Green 
function, G ,  and an optical theorem. The wave equation comprises an attenuation term, 
which is entirely due to the volume scatterers, while the optical theorem relates this term to 
the local DOS following essentially from the imaginary part of G .  To incorporate surface 
roughness, we proceed in a similar way. In particular, the properties of the rough surface 
profile are described in terms of surface scatterers. One can associate these scatterers with 
isolated bumps and dips on the surface. (The mathematical formulation of surface scattering 
can he found in [GI.) A corresponding optical theorem for the surface scatterers holds, 
too, whereas the differential equation for G remains unchanged. However. instead of the 
hard-wall boundary condition, we are guided to a complex boundary condition imposed on 
the lateral modes. Some interesting effects follow directly from the boundary condition that 
itself represents an essential result. For instance, the intersubband damping quantity does 
not increase monotonically with the subband index but saturates. In addition, the subband 
thresholds are shifted towards higher or lower energies. 

The self-consistent level broadening leads to further modifications of the resulting 
quantities. So, for instance, level broadening reduces considerably the QSE oscillations. 
It is well known that there is a significant deviation between the amplitudes of these 
oscillations predicted by current theories and the measured ones [7-1 I]. Therefore, we argue 
thal scattering-induced level broadening may, at least partly, account for this discrepancy. 
Hence, the theory of level broadening along with the effects resulting from the new boundary 
condition just mentioned can contribute to a deeper general understanding of the QSE. 

If we neglect the level broadening processes, and consider the propagating modes only, 
we reach the case normally studied in analytical descriptions of the electrical conductivity 
in thin films [12-14,1,2,15,6,16]. Assuming, moreover, a simple limiting behaviour of 
the roughness-induced damping to be approximately valid for all conducting subbands, 
OUT approach reproduces some formulae for the conductivity derived previously in the 
framework of a perturbational treatment of surface roughness. For instance, we confirm the 
well known results obtained by Trivedi and Ashcroft [ l ]  and Fishman and Calecki [Z]. So, 
in some respects, their discussions of the fit of conductivity measurements by the theoretical 
expressions are also accurate here and thus do not need to be repeated. 

The formalism we use is called the superposition method (SPM). We have shown that 
the SPM, also in its lowest approximation, is well suited to treat d.c. transport in problems 
with spatial restrictions [17-19,6]. The main assumption of the SPM as applied in this paper 
concerns the neglect of bigher-order quantum corrections to the density matrix [ZO], which 
is justified for sufficiently weak scattering processes. This implies that, e.g. with respect 
to volume scattering, the mean 6ee path 1 within the ensemble of disordered background 
scatterers is large compared with the Fermi wavelength. For good bulk conductors. e.g. 
metals, the smallness of the parameter (&)-I is fulfilled. 

The SPM can be applied to the diffusion case with a given gradient of the chemical 
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potential or to the mobility case with a driving force [20]. The diffusion case is 
mathematically much simpler than the force case and therefore we choose it to start with. 
This decision is only a formal matter because it is well known how to transform the results 
into the force picture via the Einstein equivalence. 

Our paper is organized as follows. In the next section we derive the boundary condition 
mentioned above and find the general form of the Green function. Furthermore, the optical 
theorems for both volume and surface scatterers are introduced. The DOS is a quantity 
which follows immediately from the Green function and is therefore given in section 3. In 
section 4, we outline the basic formulae of the SPM and apply them to the layer system 
under consideration. This yields a formula for the elecbical conductivity U. In section 5 
we study in detail the wave numbers pi associated with the in-plane propagation process. 
Since volume and surface scattering contribute individual terms to they are discussed 
separately. In section 6 we summarize at first some approximate expressions for U following 
from the neglect of level broadening and with further assumptions as mentioned above. 
Then, we illustrate the exact results for the DOS and the conductivity by a series of figures 
and confront them with the approximate solutions derived in previous parts of this work. 
Finally, a summary is given in section 7. 

2. Green function 

One of the basic ingredients of the SPM is the one-particle Green function, averaged over all 
configurations of volume and surface scatterers. respectively. The Green function describes 
completely the propagation and scattering-induced attenuation of a coherent electron wave 
and obeys the equation 161 

G(T, T ' )  = Go(?-, r') + d3~"NU Go(T, ~ " ) 4 n ~ ( z " ) G ( r " ,  T') s 
a . a  

az az. dzR"N, ~ ' ~ G B ( T ,  T " ) ~ I I ~ , - G ( T " ,  T' )  

where we have employed cylindrical co-ordinates T = (R,z);  the z axis is orientated 
perpendicularly to the surfaces which are located at z = f a  (thickness d 2a).  The 
vacuum propagator for the layer geometry is denoted by Go; ko is the corresponding wave 
number. The scatterers are homogeneously distributed with mean density Nu within the 
film, and with mean areal density N, on the snrfaces. respectively. For the sake of 
brevity, we have assumed that both surfaces are covered equally with scatterefs. The 
transition to a layer with two different lateral boundaries is straightforward. f"(z ) ,  2 
are the corresponding scattering amplitudes in which all backscattering processes with the 
surroundings are included, see [20]. For sufficiently weak scatterers, backscattering yields 
only a small renormalization of the original scattering amplitudes fu and fs. In particular, 
one can set Ref M Ref because the small corrections to the real parts cannot compete 
with the particle energy (* 162) that dominates the real part of the resulting wave number for 
G, cf (2). The imaginary parts Im f, however, exclusively responsible for the attenuation 
of the Green function, require a sound consideration, cf. (5). Particularly in the vicinity 
of subband thresholds the quantities Im A(z), Im may deviate considerably from their 
values well inside a subband. 

Applying the differential operator [A + k;] to (I), we find 

[A + k,'+ ~ I I~ , (Z )N , IG(TT ' )  = -S(T - T') 
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The wave equation for G follows from the volume contribution in (l), whereas the boundary 
condition* results from the surface term. The complex boundary condition (2b) is fixed by 
a single parameter, namely U 4xf;%kO2. For vanishing surface scattering, a = 0, 
formula (2b) reduces to the ordinary hard-wall boundary condioon. The parameter a can 
be easily interpreted if we model surface scatterers by small and isolated bumps or dips on 
the surface. From an experimental point of view, humps and dips may be associated with 
surplus or missing atoms, respectively, on an otherwise atomically smooth surface layer. 
Guided by the analysis given in [5 ] ,  one can deduce (namely from formula (8) in the cited 
paper) the relation 

4nRe fs = kiV (3) 

which yields the dominating real p m  of the scattering amplitude in terms of the volume 
of the surface irregularities. One has V > 0 and V < 0 for bumps and dips, respectively. 
Substituting (3) into a, we find 

R e a  = N,V (4) 

i.e. R e a  corresponds to a mean deviation h in the height of the surface (or the thickness of 
the film). Additionally, R e a  is energy independent. 

Bearing this interpretation of a in mind, the boundary condition (2b) is, in some respects, 
similar to that used as the basic ansafz in the perturbation method (see, for instance, [21, 221). 
According to this method, the boundary condition W l s d m  = 0, imposed on the total wave 
field, can be expanded in terms of the small height deviation from the mean surface profile. 
Up to first order, this series expansion yields 

W(T)lz=ia = T h ( R ) a Y / a z l , = h .  

In contrast to the perturbation method, however, the parameter a is a complex quantity. 
Its imaginary part - Im follows from the presence of configurationally averaged surface 
scatterers and is associated with the loss that a coherent waveform suffers at reflection 
at the surface. A similar attenuation process, caused by volume scatterers, occurs within 
the film. Nevertheless, the total particle density is conserved because (1) optical theorems 
for both types of scatterer guarantee particle conservation for each individual scattering 
process, and (2) each scatterer acts simultaneously as a source of an emerging wave. So the 
superposition of all scattered waves reproduces the original wave field, cf. the construction 
of the density matrix (14). 

The optical theorem for the volume scatterers is 

Together with the wave equation (b), this formula makes possible a self-consistent treatment 
of the level broadening due to volume scattering, see [3]. In order to generalize our approach 
to surface roughness scattering, the boundary condition (2b) has to be complemented by the 
corresponding optical theorem [5] 

t A boundary condition of this kind is sometimes refmed lo as the impedance baundary condition [21]. 
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The formulae (2) and (5) represent a closed system of equations and provide a complete 
description of the Green function. To simplify these formulae, we introduce a lateral mode 
representation. Actually, G(T, T I )  can be represented in its most general form as a double 
sum over all lateral modes of the film [3]. Employing similar arguments as in [17], we may 
restrict ourselves to the diagonal elements only because the non-diagonal ones are negli@ble 
for sufficiently weak volume scattering. Note that non-diagonal elements do not arise from 
surface scattering at all. Thus, equations (2 )  are formally solved by 

The term G, = (i/4)@ is the two-dimensional Green function and agrees, up to a factor 
i/4, with the Hankel function of the first kind and zeroth order 1231. The [ p n )  represent a 
complete [24] set of normalized eigenfunctions and fulfill the equations 

[ a z / a Z z  +K,']$%(Z) = 0 = VarP,(Z)/aZlz=h. (7) 

p: = - K,' + 4n(f;).N, (8) 

The wave number po is given by 

with the matrix element 

The term Rep: can be considered as the remaining energy for the in-plane propagation 
for each individual subband. Strictly speaking, only a finite number n, of modes with 
Rep; > 0 allow a real propagation process, whereas the others, due to the exponential 
drop of their wavefunctions, are evanescent. The term Imw: is the characteristic damping 
quantity (or, except for a factor h / m ,  transition rate) for each subband and results solely 
from the occurrence of scattering processes, i.e. Imol > 0 and/or Im (f;). > 0. Both volume 
and surface contributions to Imp: are always non-negative, of course. Note that 

(10) 

which follows from equations (7) guarantees -h~," 2 0. Thus, the real and imaginary 
parts of p: determine completely the basic properties of the in-plane process. In particular, 
they yield the density of states (DOS), averaged over the cross-sectional coordinate z, for 
each individual subband, and the conductivity. Before investigating the solution of equations 
(7) and (8) explicitly, let us introduce the DOS as well as the conductivity. 

2 
- h K ;  = 2hOr larP,/aZll=+~l 

3. Density of states 

The influence of the scattering processes on the formation of the lateral subbands is 
conveniently expressed in terms of the DOS of each individual mode [3]. Remember 
that the DOS itself is directly related to the scattering amplitudes via the optical theorems 
(5 ) .  For completeness, we summarize in what follows some properties of the DOS which 
have already been discussed in more detail in 131. The local DOS is essentially given by 
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the imaginary part of the Green function (6). namely (2m/nh2)hG(r, r) (for one spin 
component only). An important and more compact quantity is the DOS averaged over the 
lateral coordinate z that will be used below. It reads 

N(k0 ,  d) = (m/2nh2d) cm "=I N,  

N.  = @(Rep:) - n-' tan-' (Imp;/Rep:) (12) 

where 0 is the step function. The expression (12) arises from the behaviour of the Hankel 
function in (6)  in the limit of small arguments [23]. Formula (11) shows that all subbands 
contribute with their individual DOS (- N.) to the total one. Actually, the terms of the n, 
propagating modes (Re p: 0) are dominant, whereas the evanescent modes (Rep: c 0) 
yield only small corrections for energies far from the subband thresholds. Neglecting the 
scattering processes, Imp: --t 0, see below, the DOS of all propagating modes approach 
the maximal value, N,, + 1, and the evanescent modes have zero DOS, N. -+ 0, i.e. no 
carriers are scattered in or out of these states. In this case, we obtain from formula (1 1) the 
DOS of a smooth film without scatterers: 

N o ( b ,  d )  = mn,/2rh2d. (13) 

Here, n, = int[bd/n]. Hence N o  shows the typical staircase-like behaviour of the DOS 
as a function of wave number. For later convenience, we introduce the size-independent 
local DOS of the bulk system, Nb(ko) = (mb/2n2h2), which results from N o  in the limit 
of infinite thickness d .  

The simple limiting situation just discussed changes when scattering processes are taken 
into account. Generally, their occurrence reduces the DOS of the propagating modes but 
increases that of the evanescent ones. As (12) indicates, even the very existence of states 
in the evanescent subbands is associated with the occurrence of scattering processes, i.e. 
Im pi > 0. The specific influence of these processes on the DOS depends on the in-plane 
energy (- Rep:) of each subband. In particular, the highest conducting mode (Re p:- 2 0) 
as well as the lowest evanescent mode (Re 5 0) are affected strongly by intersubband 
scattering. To ensure the convergence of the sum (11). i.e. a finite DOS, and the existence 
of the expressions (3, the contributions Na of the higher non-propagating modes have to 
vanish in the limit n -+ 00, see section 5 .  

4. Density matrix and conductivity 

The SPM rests on the idea that the density matrix e(v,r') can be constructed via the 
superposition of waves emerging from all scatterers belonging to a given system. Here, 
volume as well as surface scatterers contribute to the whole wave field. Accordingly, the 
density matrix comprises two terms [6] 

p(r, T') = d3~"N,14~fv(~")1Z G*(T, r")G(T', T") I$r(r")12 i 
- 2  -4 a a 

d2R"N,14~fcl ko -G*(T, T")-G(T', T") azii az. 

where @(T) is the wave field at the point T. Inserting the optical theorems (5) into (14), 
we obtain, for instance, in the volume contribution the expression [@(T)lz/ImG(r, T). 
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The canier density [@Iz is given by the local DOS and the Fermi distribution function, 
f(E - p ( r ) ) .  Furthermore, in the diffusion picture applied here, a stationary current 
parallel to the film surfaces is driven by a corresponding gradient of the chemical potential, 
a p p r  = a p p R  = constant. This implies 

Similar considerations apply to the corresponding surface expression, see [61, leading to the 
relation 

With the representation (6) of the Green function and the latter formula, we can write the 
density matrix in the form 

x Gn(pnIR' - R"I) (17) 

where all non-diagonal elements are again neglected [17], and the integration over z'' in 
the first integral in formula (14) has been carried out. To combine the volume and surface 
damping in Imp: (8), we have used the identity (IO). Obviously, the density matrix (17) 
guarantees the aforementioned density reproduction, namely 

e(r , r )  = b R +  ClImG(r, T )  = l@(r)I2. 

The current density can be derived from the density matrix 

The electrical conductivity U i s  associated with the laterally averaged current density and 
requires the transition from the diffusion case to the more familiar force case. This transition 
employs essentially the Einstein equivalence between --Bp/BR and a driving force, and 
was discussed in our earlier papers based on the SPM [ZO, 191. Here, we only give the 
result [3]: 

Expression (19) is valid for a degenerate electron gas, i.e. all quantities have to be taken at 
the Fermi energy ko = k F .  As shown in [3], formula (19) represents a natural generalization 
of the quasiclassical conductivity, u(d)  - E:=, Re&/Imp? [1,6] to a system where level 
broadening is taken into account. 

5. Wave number p i  

While surface roughness scattering contributes independently via K," to p: (8), the volume 
term (Ev), is affected by the lateral eigenfunction pn which depends on the boundary 
condition (7) imposed. Therefore, let us first investigate the eigenfunctions and eigenvalues 
pn and K,, respectively, and then return to the volume contribution. 
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5.1. Surface contribution K,' 

The general solution of the differential equation (7) is given by 

(p = A exp (im) + B exp (-iKz) A ,  B = constant. 

Inserting this unsatz into the boundary condition (7), we find the two cases A = * B ,  
corresponding to 9,, - s i n ~ z  or COSKZ, and the equations 

1 - iK(Y e'Y* = f- 
1 f i x @  

which yield the eigenvalues K, .  Alternatively, these equations can be written in the form 

tanKa = -(YK COt Ka (YK. (204  

These formulae show that the {vn} are given by an alternating sequence of cosine and 
sine functions. Generally, a large number of solutions for ( 2 0 ~ )  or (20b), as necessary 
to evaluate the optical theorems, the DOS etc, can be calculated only numerically. It is 
instructive, however, to consider two analytical approximations valid in the limiting cases 
of I ~ K , ,  I << 1 or [WK, I >> 1, respectively. In the first case, which will be useful in estimating 
the lowest modes n = 1.2,. . ., we find 

K .  *.,"(I - m/a) I ~ K . I  << 1 (21) 

where K," = (2.11 - l )n/d (K," = 2nrrjd) for 'p. - COSKZ (9" - sinrz). In the opposite 
case, which is associated with the asymptotic behaviour of the 9". n >> 1, one obtains 

Now, K," = 2nx/d (K," = (2n - l ) a / d )  for p, - COSKZ (9" * sinKz). In the complex 
K plane, the eigenvalues K,, form initially, according to expression (21). a straight line 
with decreasing imaginary part for increasing n. Then. ImK, passes through a minimum. 
Eventually, I ~ K , ,  increases so that the K ,  approach the real axis 6om below, see figure I. 
The values of R ~ K ,  lie for small n as well as for large n in the vicinity of an integer 
multiple of n /d .  It is worth realizing, however, that the real part of K ,  moves, for instance 
for (pn - COSKZ, from an odd multiple of n/d to an even multiple for increasing n, namely 
to the next larger or smaller value. The direction of this shift is determined by the sign of 
Re a - Re 5. For bumpddips on the surface, Re 5 2 0, see section 2, all Re K ,  are shifted 
to the lefvright. This behaviour can be understood by bearing in mind that the appearance 
of surface scatterers corresponds to a mean thickness deviation h = Rea = N,V. Indeed, 
employing an effective thickness d + 2h (both surfaces are covered with scatterers), the 
K." (n small) are reducdincreased if h 2 0. On principle, the behaviour of both the real 
and imaginary parts of the eigenvalues { K . )  is essential to obtain consistent results for all 
physical quantities. 

In figure 1, a series of eigenvalues K" is shown. The shift of R ~ K ,  can be clearly seen. 
Note that the trivial solution KO = 0 as well as a second set of eigenvalues caused by the 
invariance of equations (20) under K -+ -K are omitted. 

The approximation (21) is not only valid for small n but also for very weak surface 
scattering, a -+ 0. If we neglect, with respect to the determination of the lateral 
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eigenfunctions, the deviation of K, from K:, we obtain v:(z) = J z 7 a s i n y ( z  -a), 
n = 1,2, . . ., i.e. the well known solution for hard-wall boundary conditions. In a series of 
papers, weak surface roughness scattering has been included via a perturbational treatment. 
This means that transition matrix elements have been calculated based on the unperturbed 
eigenfunctions qf and an appropriately chosen roughness potential. In this sense, one 
may anticipate that the damping resulting from the approximation (21) is related to these 
transition rates. In our formalism, the roughness-induced intersubband scattering is given 
by -1mK; (cf. (8)). Using the approximate expression (21), this yields 

Indeed, the explicit dependence -Im K," - n2d-3 of this result was found by various authors 
(see, for instance, 111). If we employ the optical theorem (5b) in an equivalent approximate 
form (p: instead of pn) 

we find with N,, sz 1 for n < n, 

This expression for the roughness-induced damping was derived by Fishman and Calecki [2] 
based on a geometrical roughness description and thus different parameters, and was later 
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confirmed by Kunze [6] employing the SPM as applied here. In deriving the latter formula 
we have truncated the sum (24) at n = n,. Of course, this is a rather artificial step, but 
necessary to render the sum convergent. Indeed, the further terms are of the order of 
-n21mfi:/Refii - Imp:, i.e. they increase if the contribution -1m~; (23) to Imfi; is 
used. 

Now, let us comment on the asymptotic behaviour ( I K , $ x ~  >> 1) of K~ and (0. which 
removes the divergence just discussed. From the approximation (22) it follows that 

i.e. the roughness-induced damping saturates at a value independent of the subband index n. 
The ratio of the damping quantities of the lowest modes to that of the large ones is given by 

Thus, the damping varies considerably if the lowest subbands are weakly affected by the 
surface roughness. The corresponding condition is ICYK,"~ FJ 237hll.t << 1, i.e. the mean 
deviation of the film thickness has to be small compared to the wavelength A: that can be 
assigned to the individual subbands. 

In the lateral mode representation, the optical theorem (5b) for the surface scatterers 
has the form 

Since the damping quantities of the higher modes (26) remain finite, the behaviour of N. 
alone determines their summands in the latter formula. Because N,, -+ -1m j&Re pi - 
n-' for n >> nc, the sum (28) is now convergent without any further requirements. 

5.2. Volume contribution (f");,, 

For weak (volume) scattering, as discussed in section 2, the approximation Re f" x Re fy 
is justified. Hence, the real part of the matrix element (9) is sufficiently determined 
by Re (fJ. = Re f v .  To calculate its imaginary part, responsible for the volume- 
scattering-induced intersubband transitions, the lateral dependence of Im f&) has to be 
taken seriously. Substituting the optical theorem (5a) into (9) yields 

The integral in this equation gives a finite numerical value, so that the convergence of 
the sum is guaranteed 'automatically' by the vanishing DOS - N, - n-' of the higher 
evanescent modes. The expression (29) can be readily evaluated only in the case when 
the influence of surface roughness on the lateral eigenfunctions is negligible, qn w &, and 
level broadening is suppressed completely, N,, X Q(Regi). Then 
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In simplifying this expression we have invented the familiar definition of the mean free path 
1 as the inverse product of the integral scattering cross-section, 4zlA1z, and the density of 
scatterers, N". The damping quantity (30) is at least approximately independent of the 
subband index. Without level broadening. this property is in agreement with the behaviour 
of the two-dimensional DOS and the assumed isotropic volume scattering, of course. The 
(approximate) formula (30) represents the well known result for volume-scattering-induced 
damping, first derived by Sandomirskii [12], and confirmed later by Trivedi and Asbcroft [ l ] .  
The corrections to Im (&, arising from a self-consistent treatment of volume scattering 
processes alone, have been discussed in [3].  

6. Conductivity and density of states 

In the previous sections, the Green function (6) as well as the optical theorems (5) have been 
rewritten in a lateral mode representation. This representation makes possible an efficient 
self-consistent solution of these equations. As a starting ansatz for Im (A). and Im i, 
the approximate expressions (30) and (24), respectively, can be used. The corresponding 
numerical results will discussed in the second part of this section. Before this, let us 
determine the properties of the conductivity following from the neglect of self-consistent 
level broadening. (In the case of negligible level broadening, the averaged DOS N ( 1 1 )  
reduces to N o  (13) and thus requires no further comment.) 

6.1. Appmximate formulae for a 

Without level broadening, the conductivity of a degenerate electron gas (ko = k,~) is given 
by 

e2 nc Re pi 
2zhd "=l Imp: 

a ( d )  = - - 

The relation between the exact solution (19) and the latter formula has been analysed 
in [3]. This discussion will not be repeated here. Instead, relying on (31), we derive some 
approximate expressions for U based on equivalent approximations of Rep: and Imp:. In 
particular, the real part of pi  is sufficiently determined by k; - (K!)'. In estimating the 
imaginary part, we make use of the approximate values for -Im K," and Im given in 
section 5. 

If we first restrict ourselves to very weak (I&Y << 1) surface roughness scattering, 
Imp: = - I~K," ,  and insert expression (25) into formula (31) we obtain 

Apart from different roughness parameters, thii result agrees with the formula derived by 
Fishman and Calecki [2]. These authors employ the model of a continuously cormgated 
surface characterized by a root mean square height deviation A and a correlation length .$. 
A comparison of formula (13) in the cited paper and (32) yields the reasonable interrelation 
(41rlilk;~)'N, = VZX A2.$' for the parameters used. As discussed in [Z]. the formula 
(32) predicts U, - dm; m varies from < 6 if the fist propagating mode has just been 
opened, to 2 2 in the limit of a large number of propagating subbands n, >> 1. Indeed, 
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such a pronounced dependence on the film thickness has been confirmed by experimental 
investigations, cf the references in [2,61. 

While the properties of very thin films may be dominated by surface roughness, 
the general behaviour of U is determined by both surface and volume scattering. 
Correspondingly, Imp: comprises the volume term (30) as well as -h~;  as above. 
Equation (31) now yields 

where we have introduced the bulk conductivity Ob = ezk~1 /3n2h .  In the limit of large 
nc. i.e. thick films d =. I ,  the sum in the latter equation can be converted into an integral 
leading to 

i.e. only a small correction term of Fuchs-Sondheimer type [25.26] remains from surface 
scattering. In the original Fuchs theory [Z], surface roughness is characterized by a single 
phenomenological quantity, p ,  called the specularity parameter, The fraction of diffusely 
scattered particles, namely (1 - p ) ,  is expressed in formula (34) in terms of the scattering 
cross-section, - lxl*, and the density, N,, of surface scatterers. A detailed comparison 
yields 

This relation can be conveniently used for a rough estimation of the strength of the surface 
scatterers considered. 

The expressions (32)434) are based on the damping quantity (25). which requires a 
calculation of I m x  via the optical theorem (5b). (Remember, however, that the finite 
value of Im relies on the restriction to terms of the propagating modes only, cf (24).) 
This procedure has led to a rather strong dependence of U on the thickness. Instead, we 
could consider Im f; approximately as a constant parameter, i.e. independent of thickness. 
The corresponding roughness-induced damping quantity is given by (23). Inserting this 
expression into the conductivity (31), we obtain U, - d2.  This law represents a well known 
result discussed for instance in [1,27].  The simultaneous occurrence of volume scattering 
leads again, in the limit of thick films, to a conductivity U",$ of Fuchs-Sondheimer type, 

Up to the present point. we have used the limiting behaviour of -1mK; in the case 
I.,".! < 1 (see section 5), i.e. when the lowest modes are only weakly influenced by surface 
roughness. For increasing surface scattering, the propagating subbands are eventually 
approximated better by expressions valid in the opposite limiting case I K , " . ~  >> 1. The 
corresponding damping quantity is given by (26). Substituting Im g/8n2@ from the 
optical theorem (28). it becomes -1mK; 4 Zk&N,h*d)-'. Now, the conductivity (31) 
yields 

cf (34). 

ab 

'" 1 + 21/nN,h2d 

For dominating surface scattering (1 >> d ) ,  this formula asserts a weak dependence on the 
thickness, namely ux - d, whereas for thicker films or smaller mean free paths only a 
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correction of FuchsSondheimer type arises from the roughness term in the denominator 
of (36). These results are in good agreement with measurements on ultrathin silver films 
published by Schad and co-workers 1281. Indeed, they have found that the conductivity of 
films after annealing follows a linear law a - d (d runs from a few monolayers to 125 
monolayers). The conductivity of freshly deposited films rises significantly more slowly, 
however. This can be expected from the enhanced volume scattering (small I )  due to growth 
defects. Due to annealing, these defects are partially removed leading to a considerable 
increase of the mean free path. 

6.2. Numerical results 

In the numerical calculations, the variable d and the parameters CO 3 474xI2N,, R e x  
and I = (4rrlf,12Nu)-' are used. For the sake of brevity, all lengths are given in units 
of z /kO = n/kF = hF/2. Half the Fermi wavelength is the period of oscillations due 
to the quantum size effect (QSE) and hence, in our context, the basic length scale of the 
system. The parameter CO is a dimensionless quantity and can be associated with the extent 
to which the surface is effectively covered with scatterers. Additionally, in accordance with 
(32x34). the influence of surface scattering on the approximate conductivity is fixed by CO. 

Via formula (35), this quantity can be expressed in terms of the more familiar specularity 
parameter. 

In principle, our set of parameters could be completed by Re f v .  However, the real part 
of f v ( z )  merely gives rise to a constant shift of Rep: (8) which is omitted. So, the volume 
scattering processes are entirely determined by the mean free path 1 in agreement with other 
theoretical calculations and experimental studies. 

In view of experimental investigations which have revealed QSE-induced oscillations of 
the conductivity [8-101, a parameter range of about 6.5 5 1 5 30 seems to be of relevance. 
For good CoSiz films, larger values have been reported. 

For 1 + 00, the properties of the physical quantities under consideration are solely 
influenced by surface roughness scattering. We start by focusing on this limiting case. 

6.2.1. Surface scattering. Instead of the DOS itself ( I l ) ,  we have plotted in figure 2 the 
averaged DOS multiplied by d and normalized to the bulk DOS Nb. The resulting quantity 
is thus equal to the sum in (11). E."=, N.. 

The curve for CO = R e L  = 0 follows from N o ,  see (13). In the ideal case, all 
propagating modes contribute the same portion to the total DOS, and every subband that 
becomes conducting increases the plotted quantity by one, leading to its staircase-like shape. 

The further results shown in figure 2 reflect the influence of a finite surface roughness. 
The parameters are chosen such that h a  - Ix)* is constant for all curves, whereas 
Re (Y - cu/Re fE varies. Accordingly the curves are shifted with respect to N o .  As can 
also be seen from figure 2, the broadening of the levels is less pronounced. The most 
significant changes appear in the vicinity of the subband thresholds. In particular, just 
below a threshold, the scattering into the lowest evanescent mode is enhanced leading to 
an increase of the corresponding DOS Nnc+, .  Just above a threshold, (12) predicts that the 
DOS of the highest propagating mode is reduced below the maximum value No, = I. These 
two mechanisms lead to the smooth shape of the DOS in figure 2, i.e. no discontinuities 
occur at the thresholds. Furthermore, it can be proved that increasing scattering processes, 
e.g. due to an increasing value of Imor (not shown) or a finite value of 1 (see below), cause 
an enhanced smearing of the DOS. 

In figure 2 the smearing of the DOS does not increase for a rising number of propagating 
modes contributing to intersubband transitions. This behaviour can be understood by bearing 
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--- CO = 0.1 

0 1 2 3 4 5 6 7  

d 
Figurc 2. The latcnlly averaged DOS N (see (11)) multip!ied by d/Nb as a function of the 
thickness d for t h e  values of the parameter eo and Ref, = +0.05, For Ref, 2 0, the 
lhresholds a~ shiiied to largerlsmaller thicknesses, ef (21). The thicker full curve refers to a 
film with no scattering processes. (Remember thal all lengths are given in units of n1k.n.) 

in mind that a larger thickness (or n,) is also accompanied by a reduction of the damping 
quantities -ImK,Z, cf, for instance, (23). 

In figure 3 the (reduced) conductivity (19) is shown for four sets of parameters taken 
from the figure of the DOS just discussed. As in figure 2, the shift of the different curves 
corresponding to different surface scatterers is obvious. In addition, we see that enhanced 
roughness scattering may lead to an increase of the conductivity, namely the dotted curve 
for R e x  = 0.05 and CO = 0.2 lies above the full curve for the same Re but a smaller 
value of CO. To understand this result, remember that a larger value of Rea! - co/Rex 
leads to a more pronounced shift of the subband thresholds to smaller energies, i.e. the 
in-plane energy increases. This behaviour is restricted, however, to very thin films. Indeed, 
for increasing d ,  the full curves rise faster than the dotted curves. This result is in agreement 
with the approximate expression (32) which asserts us@) - CO-'. 

As can be seen from figure 3, a larger value of CO is associated with a smaller amplitude 
of the quantum size oscillations. The smearing of these oscillations is weak, however, i.e. 
the conductivity retains a sawtooth-like shape which is a typical feature of calculations 
without level broadening. This result could be expected from the DOS, see figure 2, which 
is also only weakly rounded. 

The influence of level broadening becomes more obvious if we compare the conductivity 
resulting from different Ima - Imx - lxl*, cf. the lower curves in figure 4. These 
results show clearly that U behaves continuously at the thresholds and that the quantum size 
oscillations are smeared out. This qualitative behaviour of the conductivity can be explained 
in the same way as that of the DOS, see above. Just below a threshold U is reduced due 
to the enhanced scattering into the lowest evanescent mode. Above a threshold the reduced 
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Figure 3. The redoced conductivity a5 a function of the thickness d for two values of the 
parameter CO and ReL = *0.05. The bulk conductivity 06 corresponds to a mew free path 
1 = 28.5. 

DOS of the highest propagating mode prevents this subband contributing significantly to the 
scattering of caniers occupying other modes. Remember that the intersubband transitions 
are weighted by the DOS of the final mode, see for example (29). As a consequence, U 

drops below a conductivity calculated without level broadening. 
In general, the density of scatterers N, as well as R e i ,  which is related to the volume 

of the individual surface irregularities (3). are a function of thickness and therefore should 
be derived from a growth model. In addition, different Re 3 can appear simultaneously. 
Our approach based on the SPM can be generalized to allow for such a more realistic 
description. Here, however, let us employ only a simple averaging procedure to reveal an 
effect which may result from different surface scatterers. In figure 4 the upper two curves 
represent mean values calculated from two solutions of U referring to ReA = M.05. 
Experimentally, this average corresponds to a layer evenly covered with sections of either 
bumps or dips. The result for CO = 0.2 is derived from two largely shifted curves having 
almost coinciding thresholds. This implies that it agrees roughly with the conductivity of a 
film with one type of scatterer only. It is more likely, of course, that the superposition of 
two original curves yields a mean conductivity as that referring to CO = 0.05 (see figure 4, 
uppermost curve). The peaks of this curve are almost equidistant, pretending that the period 
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Figure 4. The upper W O  
c w ~  represent averaged values which are wlculated from hvo results for Ref$ = 0.05 and 
Ref, = -0.05, respectively. The lower four cwes have egual values of lReoll but differ 
with respect to Ima.  (The Ewes for positive (negative) Refs are shied to smaller (larger) 
thicknesses.) The bulk conductivity q corresponds to a mean free path 1 = 28.5. 

The reduced conductivity as a function of the thickness d .  

of the quantum size oscillations is half as small as it should be. One can imagine that the 
superposition of more than two types of scatterer can give rise to further fictitious periods. 

6.2.2. Suflace and volume scattering. In figure 5 the DOS is shown for different parameters. 
For a decreasing mean free path andor a larger number of propagating modes, the steps 
of the ideal DOS No (13) are washed out and finally disappear. This is reasonable, in 
view of the arguments given above. Similarly, the conductivity plotted in figure 6 exhibits 
a more pronounced smearing caused by the self-consistent level broadening. (To avoid 
misunderstanding, we point out that the conductivity U for the parameter 1 is given in units 
of ob - 1.) It is worth mentioning, however, that the position of the thresholds depends on 
the choice of the parameter 1, too. In particular, the maximum conductivities are shifted to 
smaller d for decreasing values of 1,  whereas the location of the corresponding minima is 
almost unchanged. Thus, not only surface scattering but also volume scattering (along with 
a non-zero surface roughness) gives rise to a shift of the oscillations in the conductivity. 

Finally, in figure 7 we have shown averaged conductivities and a result following from 
volume scattering only. In accordance with the increase of the total scattering processes, 
the full curve lies below the upper broken curve. In addition, the amplitude of the Q S E  
induced oscillations is considerably reduced due to the enhanced level broadening and the 
occurrence of different types of scatterer. The general shape of the full curve is in good 
agreement with experimental results on ultrathin films. 
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Figure 5. The latenlly averaged DOS N (see (11)) mukiplied by dfNb as a function of the 
ihicFess d for Uyee vaIFes of the mean free pa& 1 and a roughness fixed by eo = 0.2 and 
Refs = +0.1. For Re& 2 0. h e  lhresholds are shifted 10 largerlsmaller values of d .  The 
thicker full CUNC rrfers IO a 61m with no scattering processes at U, i.e. CO = ~ e j ,  = 1 - 1  = 0. 

7. Summary 

From the very beginning, the quantum mechanical description of thin films has been based 
on the concept of lateral subbands. This implies that a sound evaluation of all quantities is 
required that characterize these subbands. In this paper, we have put forward a theory that 
enables us to determine self-consistently the scattering-induced broadening of the levels. 
The basic formulae employed in OUT approach are the equations for the Green function G 
and two optical theorems with respect to volume and surface scatterers, respectively. As 
usual, volume scattering appears directly as a damping term in the differential equation 
for G. To incorporate surface scattering, however, we have derived a complex boundary 
condition Q b )  imposed on G .  For vanishing volume scattering, the Green function is 
diagonal with respect to a lateral mode representation and, in principle, can be found for any 
roughness parameter CY, where CY = 4nhNs determines completely the surface properties in 
the boundary condition. The appearance of diagonal elements only in G is due to the fact that 
for each thickness d and each surface roughness CY a specific set of adapted eigeufunctions is 
calculated. In this sense, OUT approach contrasts with the familiar perturbational treatment of 
surface roughness. There, transition matrix elements are evaluated based on the unperturbed 
eigenfunctions of a smooth film. For increasing roughness and, consequently, increasing 
matrix elements the theory becomes inappropriate. 

The boundary condition leads to some interesting features of the complex lateral 
eigenvalues K,. (Remember that IC! = nrr/d, n = 1,2, ..., for a smooth film.) 
Firstly, the real part moves for higher n values from an integer multiple of n ld  to 
the next larger or smaller one, depending on the sign of Rea, when n goes from one 
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Figure 6. The reduced conductivity as a function of the thickness d for 'WO values of the 
mean free palh!. The surface roughness is determined by CO = 0.2 and Re j5 = 50.1. (The 
curves for Ref, > 0 start at smaller values of d.) The arrows indicate that the h s h o l d s  are 
slightly shifted. The bulk conductivity ab refen to the value of lhe mean fiw palh 1 used in the 
calculation of the corresponding a .  

to infinity. Secondly, the imaginary part (or, strictly speaking. I I ~ K . ~ )  associated with 
roughness-induced intersubband transitions increases linearly with n, passes a maximum 
and approaches zero again as n-', n -+ CO. Only the linear regime leading to - I ~ K ;  - nz, 
see (U), is related to the results derived from perturbational calculations. Nevertheless 
the whole behaviour is readily understood in terms of scattering theory. Indeed, if we 
assign a wavelength An - (ReKn)-' to each individual mode, the strongest scattering (i.e. 
maximum I ~ K , I )  of a wave incident on the surface occurs if A, is comparable with the 
size - h = Rea of surface irregularities. For An >> h ,  which may be satisfied for the lowest 
modes, the incident wave does not resolve the rough shape of the surface and thus I I ~ K . I  
is small. In the opposite case, An << h, we are again guided by these considerations to a 
small value of IIm K . I .  On principle, the discussed properties of both the real and imaginary 
parts of the lateral eigenvalues are essential, for example to make convergent the sum in 
the optical theorem (5b) for the surface scatterers. 

As shown in sections 5 and 6, the reproduction of standard results deduced within the 
scope of perturbational methods relies on the neglect of level broadening and the use of 
K ,  in the linear regime mentioned above. The existence of eigenvalues of this kind is 
associated with the condition I W K , " ~  = nnh/d < 1 (21) king fulfilled for a sufficiently 
large number of n. Thus, such a region has not necessarily to exist. On the other hand, 
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Figure 7. The reduced conductivity as a function of the lhickness d .  The uppermost curve 
corresponds to the occurrence of volume scattering processes only, i.e. eo = Rei,  = 0. The 
others represent averaged values which are calculated from WO mulls for Re f, = 0.05 and - .. 
R e s  = -0.05, respectively, and eo = 0.2. As in figure 6, the buL conducIivity 
the value of the mean free path 1 used in the calculation of the mmsponding U .  

refers to 

using the eigenvalues of the opposite limiting case I&I >> 1, we have derived an analytical 
expression for U (see (36)) and shown that measurements are well described by applying 
this theoretical result. 

In view of experimental investigations our approach described here is mainly limited 
due to the consideration of only one type of surface scatterer, independent of thickness. 
(Of course, the latter restriction corresponds to the assumption of a thickness-independent 
correlation function in the model of a continuously cormgated surface usually made by other 
authors.) These resmctions are not a matter of principle. While the inclusion of further kinds 
of (surface) scatterer is straightforward in the framework of the SPM, the use of thickness- 
dependent surface parameters requires additional effort (e.g. a growth model). Calculations 
along these lines will be left for the future. Nevertheless, our present theory already yields 
some results that are interesting from an experimental point of view. ( I )  Scattering-induced 
level broadening suppresses the QSE oscillations. As well as a macroscopically varying 
thickness that averages out all discrete features [ 11, level broadening can account for the 
fact that the usuaUy predicted oscillatory behaviour of the conductivity and other physical 
quantities is less clearly seen in experiment. (2) According to our calculations (see section 6 )  
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surface as well as volume scattering gives rise to a parameter-specific shift of the thresholds 
as a function of d [29]. This may explain why differently deposited layers exhibit quantum 
size oscillations which are slightly shifted against each other [l0,30]. (3) We have shown 
that the appearance of different types of surface scatterer (bumps and dips), even in a rather 
simple model, can lead to additional quantum size-induced peaks in the conductivity (or 
steps in the DOS) and a loss of the original period A F / ~ .  Instead of A.=/2, a number of 
fictitious periods can occur and compIicate the interpretation of experimental data. These 
effects may also account for an unsuccessful search for quantum size oscillations [ 1 I]. 
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